Find out more at eXoNews! 
The THEMIS Mission!
Eco-Beavers, Space Diamonds,
Killer Wheat, New Stars in N90,
Nuclear Waste Containment?
The THEMIS Mission!

THEMIS in orbit, as pictured by NASA artist. (NASA)
University of Alberta News Release

January 10, 2007 - On February 15, NASA will launch the largest number of scientific satellites ever sent into orbit aboard a single rocket. A handful of Alberta scientists will be at Kennedy Space Center watching and waiting. For Dr. Ian Mann and Dr. John Samson, researchers in the Department of Physics at the University of Alberta, the real fun will begin when the satellites start taking measurements in the eye of space storms above observatories spread across North America.

The satellites, all carrying identical suites of electric, magnetic, and particle detectors, are part of the NASA THEMIS mission (for "time history of events and macroscale interactions during substorms").

THEMIS is a collaborative effort of scientists from the US, Canada and Europe that will study processes occurring in near-Earth space and elsewhere in the universe.

Mann, a THEMIS co-Investigator and Canada Research Chair in Space Physics says "with an unprecedented flotilla of five research satellites flying in formation we will discover for the first time how energy release is triggered in extreme space weather events."

Given the vulnerability of satellites to fluxes of energetic particles, the results will help scientists better understand how to protect them during near-Earth space storms. A beautiful and fascinating side benefit of this project will be discovering why the most spectacular auroral displays look the way they do.


The THEMIS mission (NASA)

Auroras are powered by solar wind - a stream of charged particles expelled by the sun. This wind blows past the earth at about 400-700 km per second and generates storms in the earth's magnetic environment. In the polar regions, these explode into spectacular auroral displays.


The eerie glow of the northern lights seems exquisite and quite harmless.

"By studying these explosions in the natural laboratory of near-Earth space, we can also learn how energy is explosively released in magnetised astrophysical objects in the universe. This also has important implications for magnetic confinement in nuclear fusion power reactors" adds Mann.

The THEMIS satellites will fly in carefully coordinated orbits, and every four days, will line up over Canada along the Earth's magnetic tail to track disturbances in near-Earth space in the magnetosphere.

Satellite data from the THEMIS mission will be compared to observations from ground stations across the Canadian Arctic.

Since most of the readily accessible land under the northern-hemisphere auroral zone is in Canada, 16 of the 20 ground-based observatories will be set up in Canada, with the other four in Alaska. The observatories will host magnetometers which will monitor the magnetic signatures of explosions in near-Earth space known as substorms, as well as automated all-sky cameras.

Magnetometer data at some of the THEMIS ground-based observatory sites will be provided by the CARISMA (Canadian Array for Real-time Investigations of Magnetic Activity) magnetometer array. Dr. Mann is the Principal Investigator of CARISMA, operated by the University of Alberta and funded by the Canadian Space Agency. A $1.3M expansion of the CARISMA array was recently funded by CFI.

Data collected from the observatories and the THEMIS satellites will be analyzed by teams of scientists at the University of Alberta working with Dr's Mann and Samson. Data from the THEMIS mission will be made available over the internet using the computing facilities at the University of Alberta in a project led by Dr. Robert Rankin in the Physics Department.

In Canada, THEMIS partners include the University of Alberta, University of Calgary and the Canadian Space Agency. The THEMIS Principal Investigator institute is the University of California, Berkeley.

University of Alberta - http://www.ualberta.ca

THEMIS Investigates Auroras, Magnetospheric Substorms

NASA News Release

January 9, 2007 - On a clear night over the far northern areas of the world, you may witness a hauntingly beautiful light display in the sky that can disrupt your satellite TV and leave you in the dark.


These are photos of the aurora before and during a substorm. The left image is the
typical appearance of the aurora before a substorm. During a substorm, the single
auroral ribbon may split into several ribbons (middle image) or even break into
clusters that race north and south (right image). (NASA/ Jan Curtis)

The eerie glow of the northern lights seems exquisite and quite harmless. Most times, it is harmless. The display, resembling a slow-moving ribbon silently undulating in the sky, is called the aurora. It is also visible in far southern regions around the South Pole.

Occasionally, however, the aurora becomes much more dynamic. The single auroral ribbon may split into several ribbons or even break into clusters that race north and south. This dynamic light show in the polar skies is associated with what scientists call a magnetospheric substorm. Substorms are very closely related to full-blown space storms that can disable spacecraft, radio communication, GPS navigation, and power systems while supplying killer electrons to the radiation belts surrounding Earth. The purpose of NASA’s Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is to understand the physical instability (trigger mechanism) for magnetospheric substorms.

A clash of forces we can’t see with the human eye causes the beauty and destruction of space storms, though the aurora provides a dramatic symptom. Earth's molten iron core generates an invisible magnetic field that surrounds our planet. This magnetic field and the electrically charged matter under its control compose the Earth’s magnetosphere.

The sun constantly blows an invisible stream of electrically charged gas, called the solar wind, into space. The solar wind flows at very high speed past the Earth and its magnetosphere. In order to visualize what happens when the solar wind buffets the Earth’s magnetosphere, imagine a windsock in a gale force wind. The Earth's magnetosphere captures and stores small fractions of the colliding solar wind energy and particles on magnetic field lines that stretch like rubber bands.

During substorms, the solar wind overloads the magnetosphere with too much energy and the stretched magnetic field lines snap back like an enormous slingshot, energizing and flinging electrically charged particles towards Earth. Electrons, the particles that carry electric currents in everything from TVs to cell phones, stream down invisible lines of magnetic force into the upper atmosphere over the polar regions. This stream of electrons hits atoms and molecules in the upper atmosphere, energizing them and causing them to glow with the light we know as the aurora.

The same electrons sometimes charge spacecraft surfaces, resulting in unexpected and unwanted electrical discharges. And those electrons that enter the radiation belts can ultimately find their energies boosted to levels millions of times more energetic than the photons that comprise the light we can see. Electrons with these energies can damage sensitive electronics on spacecraft and rip through molecules in living cells, potentially causing cancer in unshielded astronauts. Rapidly varying magnetic fields associated with magnetospheric substorms also induce electric currents in power lines that can cause blackouts by overloading equipment or causing short circuits.

Although the consequences of substorms are well-known, it is not clear exactly what finally snaps in the overloaded magnetosphere to trigger a substorm.


THEMIS All-sky Imager (NASA)

Understanding what happens during substorms is important. "The worst space storms, the ones that knock-out spacecraft and endanger astronauts, could be just a series of substorms, one after the other," said David Sibeck of NASA's Goddard Space Flight Center in Greenbelt, Md., project scientist for the THEMIS mission. "Substorms could be the building block of severe space storms."

Just like meteorologists who study tornadoes to understand the most severe thunderstorms, space physicists study substorms for insight into the most severe space storms. “Substorm processes are fundamental to our understanding of space weather and how it affects satellites and humans in the magnetosphere,” said Vassilis Angelopoulos, THEMIS principal investigator at the University of California's Berkeley Space Sciences Laboratory, in Berkeley, Calif. Scientists propose two possible triggers for substorms, but until now, there has been no way to distinguish between the two models.


FAST Electrostatic analyzer (NASA)

Discerning between the two proposed substorm trigger mechanisms is difficult because the magnetosphere is so large. Over Earth's night (solar wind down-stream) side, the solar wind stretches the magnetosphere far past the moon's orbit, to form the geomagnetic tail. Substorms start from a small region in space inside the geomagnetic tail, but within minutes cover a vast region of the magnetosphere. However, the two proposed trigger mechanisms predict substorm onset in distinctly different locations within the geomagnetic tail, so the key to solving this mystery lies in identifying the substorm point of origin.

Previous single-spacecraft studies of the Earth’s magnetosphere have been unable to pinpoint where and when substorms begin, leading to extensive scientific debate on the topic. However, NASA's THEMIS mission will solve this mystery with coordinated measurements from a fleet of five identical satellites, strategically placed in key positions in the magnetosphere, in order to isolate the point of substorm origin. The mission, named for Themis, the blindfolded Greek Goddess of Order and Justice, will resolve this debate like a fair, impartial judge.

THEMIS is scheduled for launch in February. When the five probes align over the North American continent, scientists will collect coordinated measurements down-stream of Earth, along the sun-Earth line, allowing the first comprehensive look at the onset of substorms and how they trigger auroral eruptions. Over the mission's two-year lifetime, the probes should be able to observe some 30 substorms.

Down-stream alignments have been carefully planned to occur over North America once every four days. For about 15 hours surrounding the alignments, 20 ground stations in Canada and Alaska with automated all-sky cameras will document the aurora from Earth. The combined spacecraft and ground observations will give scientists the first comprehensive look at the phenomena from Earth's upper atmosphere to far into space, enabling researchers to pinpoint where and when substorm initiation begins.

THEMIS Mission - http://www.nasa.gov/mission_pages/themis/main/index.html

Procrastination!

(Clay Bennett)
University of Calgary News Release

January 10, 2007 - A University of Calgary professor in the Haskayne School of Business has recently published his magnum opus on the subject of procrastination – and it's only taken him 10 years.

Joking aside, Dr. Piers Steel is probably the world's foremost expert on the subject of putting off until tomorrow what should be done today. His comprehensive analysis of procrastination research, published in the recent edition of the American Psychological Association's Psychological Bulletin, presents some surprising conclusions on the subject, such as:

Most people's New Year's resolutions are doomed to failure

Most self-help books have it completely wrong when they say perfectionism is at the root of procrastination, and

Procrastination can be explained by a single mathematical equation

"Essentially, procrastinators have less confidence in themselves, less expectancy that they can actually complete a task," Steel says. "Perfectionism is not the culprit. In fact, perfectionists actually procrastinate less, but they worry about it more."

Other predictors of procrastination include: task aversiveness, impulsiveness, distractibility, and how much a person is motivated to achieve. Not all delays can be considered procrastination; the key is that a person must believe it would be better to start working on given tasks immediately, but still not start.

It's estimated that about 15-20 per cent of the general population are procrastinators. And the costs of procrastinating can add up well beyond poor work performance, especially for those who delay filing their taxes or planning their retirement.

Steel says motivational failures such as difficulty in sticking to diets and exercise regimes – frequently the focus of New Year's resolutions – are related to procrastination because impulsiveness is often at the root of the failure.

"Temptations that are close at hand are difficult to resist. Addicts often relapse after returning from treatment facilities because drugs and alcohol become easily available and daily habits reassert themselves. Or we load up on bread in the restaurant before the meal is served. Or we check our email 10 times an hour instead of completing a project."

The good news is that willpower has an unusual capacity. "The old saying is true: 'Whether you believe you can or believe you can't, you're probably right'," Steel says. "And as you get better at self control, your expectancy about whether you can resist goes up and thus improves your ability to resist."

Steel has also come up with the E=MC2 of procrastination, a formula he's dubbed Temporal Motivational Theory, which takes into account factors such as the expectancy a person has of succeeding with a given task (E), the value of completing the task (V), the desirability of the task (Utility), its immediacy or availability (Ă) and the person's sensitivity to delay (D).

It looks like this and uses the Greek letter Ă: Utility = E x V/ĂD

It's still unclear why some people may be more prone to developing procrastination behaviour, but some evidence suggests it may be genetic. Steel concludes: "Continued research into procrastination should not be delayed, especially because its prevalence seems to be growing."

The title of the paper is "The Nature of Procrastination: A Meta-Analytic and Theoretical Review of Quintessential Self-Regulatory Failure." The American Psychological Association's Psychological Bulletin is arguably the top academic journal for the social sciences. Steel's research on the subject is referred to as a meta-analysis, in which he distills and synthesizes the evidence on procrastination from 691 other research sources.

University of Calgary - http://www.ucalgary.ca

Eco-Beavers!

The beaver is an ally in conserving valuable wetland habitat
for declining amphibian populations.
University of Alberta News Release

January 10, 2006 - The humble beaver, besides claiming a spot of honor on the Canadian nickel, is also helping fellow species survive.

Though considered a pest because of the culvert-clogging dams it builds on streams, the beaver is an ally in conserving valuable wetland habitat for declining amphibian populations, a University of Alberta study shows.

The study, conducted in the boreal forests of west-central Alberta, showed that frog and toad choruses are only present on streams where beaver dams are present. While surveying the calls of male frogs and toads engaged in acoustic displays for females, researchers recorded approximately 5,000 boreal chorus frogs, wood frogs and western toads at 54 beaver ponds over a two-year period.

Pitfall traps on beaver ponds captured 5.7 times more newly metamorphosed wood frogs, 29 times more western toads and 24 times more boreal chorus frogs than on nearby free-flowing streams.

The study identifies beaver as a valuable 'surrogate species', said University of Alberta researchers Dr. Cam Stevens (lead author) and Dr. Cindy Paszkowski. The work is published in the January 2007 issue of Biological Conservation. Surrogate species can be indicators of changes to the environment caused directly or indirectly by human activities, population changes in other species, or they can act as 'umbrellas' protecting a large number of naturally co-occurring species.

"The concept of surrogate species in conservation planning offers simple, ecologically-based solutions to help conserve and manage ecosystems," said Paszkowski, a professor of biological sciences at the University of Alberta in Edmonton, Canada.

The beaver pond seems to provide suitable breeding habitats because of its warm, well-oxygenated water, which enhances development and growth rates of frog and toad larvae. As well, the ponds may be less hospitable to predatory fish because the dams are often located on small streams where winterkill conditions are common, the study suggests.


Leave it to beaver!

The findings could benefit amphibian conservation efforts for forestry and energy industries, by making room for beaver dams in their landscape-use plans, the researchers said.

"The challenge will be to promote modest levels of beaver activity even where conflicts with human interests might occur, such as areas designated for tree harvesting and landscapes with high road densities," Stevens noted.

Beaver may prove useful as a surrogate species in helping conserve frogs and toads in other remote parts of Canada's boreal forest and western North America.

The study was supported in part by the Natural Sciences and Engineering Research Council of Canada.

University of Alberta - http://www.ualberta.ca

Space Diamonds?

Black, or carbonado, diamond. (Steve Haggerty)
National Science Foundation News Release

January 9, 2007 - If indeed "a diamond is forever," the most primitive origins of Earth's so-called black diamonds were in deep, universal time, geologists have discovered. Black diamonds came from none other than interstellar space.

In a paper published online on December 20, 2006, in the journal Astrophysical Journal Letters, scientists Jozsef Garai and Stephen Haggerty of Florida International University, along with Case Western Reserve University researchers Sandeep Rekhi and Mark Chance, claim an extraterrestrial origin for the unique black diamonds, also called carbonado diamonds.

Infrared synchrotron radiation at Brookhaven National Laboratory was used to discover the diamonds' source.

"Trace elements critical to an 'ET' origin are nitrogen and hydrogen," said Haggerty. The presence of hydrogen in the carbonado diamonds indicates an origin in a hydrogen-rich interstellar space, he and colleagues believe.

The term carbonado was coined by the Portuguese in Brazil in the mid-18th century; it's derived from its visual similarity to porous charcoal. Black diamonds are found only in Brazil and the Central African Republic.

"Conventional diamonds are mined from explosive volcanic rocks [kimberlites] that transport them from depths in excess of 100 kilometers to the Earth's surface in a very short amount of time," said Sonia Esperanca, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "This process preserves the unique crystal structure that makes diamonds the hardest natural material known."

From Australia to Siberia, from China to India, the geological settings of conventional diamonds are virtually identical, said Haggerty. None of them are compatible with the formation of black diamonds.

Approximately 600 tons of conventional diamonds have been mined, traded, polished and adorned since 1900. "But not a single black/carbonado diamond has been discovered in the world's mining fields," Haggerty said.

The new data support earlier research by Haggerty showing that carbonado diamonds formed in stellar supernovae explosions. Black diamonds were once the size of asteroids, a kilometer or more in diameter when they first landed on Earth.

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.58 billion. NSF funds reach all 50 states through grants to nearly 1,700 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes nearly 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

National Science Foundation - http://www.nsf.gov
Wheat Kills Predators!

Christie Williams, a Purdue University
adjunct assistant professor and USDA-
Agricultural Research Service scientist,
is studying ways to increase wheat plant
resistance to the insect. (Purdue/
Tom Campbell)
Purdue University News Release
By Susan A. Steeves

WEST LAFAYETTE IN January 10, 2006 — A newly identified wheat gene produces proteins that appear to attack the stomach lining of a crop-destroying fly larvae so that the bugs starve to death.

The gene's role in creating resistance to Hessian flies was a surprise to U.S. Department of Agriculture and Purdue University researchers, discoverers of the gene and its function. They made the finding as they investigated new, long-term methods to protect wheat from insect damage.

"This is a different kind of defense than we were expecting," said Christie Williams, a USDA-Agricultural Research Service scientist and Purdue Department of Entomology adjunct assistant professor. "Usually we expect the plant to fortify its cell walls or make poisons to use against insects and pathogens."

Instead, the researchers found that a specific protein, called HFR-3, one of a group of substances called lectins, is capable of binding with a carbohydrate complex in the Hessian fly larvae. The lectin acts as a key to the carbohydrate structure, known as a chitin.

When the larvae attack a resistant plant, the plant's lectin production quickly increases by as much as 3,000 times. The larvae then ingest the lectin. This interaction probably damages the larvae's chitin-rich mid-gut lining so that it can't absorb nutrients from the plant, causing the insects starve, Williams said.

Some Hessian fly larvae, which are called virulent, are capable of ridding their bodies of lectin and surviving. Avirulent larvae are unable to deactivate the lectin.

However, the researchers believe that plants resistant to Hessian fly invasions may make several strains of lectins in response to virulent larvae, Williams said.

Results of the study are published in the January issue of the journal Molecular Plant Pathology.

Researchers also discovered that not only do lectins damage the insect's mid-stomach, the lectins also taste bad and have some toxicity.

"By studying these different wheat genes, we're starting to put together a bigger picture of how Hessian fly–wheat interactions trigger resistance in the plant," Williams said. "We think that some of this has to do with the plant producing enough lectin that it just becomes so unpalatable that the insects can't feed and they starve to death."

The gene's role in creating resistance to Hessian flies was
a surprise.

Wheat plants that produce few or no lectins that bind to chitin are susceptible to Hessian fly larvae attack, she said. In addition, some virulent larvae can reprogram plant development so that cells in leaves and the base of the plant where the insects feed pump out nutrients favored by the insect. If this happens then even the weak, avirulent larvae on the same leaf have a chance to survive.

The researchers discovered that Hessian fly larvae reprogramming of resistant plant cells only occurs at sites where the insects attack. The study also revealed that increased numbers of larvae on a plant caused a parallel increase in lectin. This shows that wheat plant responses to these insects are localized and take less energy than a more global resistance response.

"Figuring out some of the ways that a plant is able to respond to insects with resistance will be useful in crop breeding programs," Williams said. "We're finding compounds like this chitin-binding lectin that don't cost the plant much to produce, unlike producing poisons and stronger walls. Those inducible defenses use a lot of a plant's energy that could be used toward growth and reproduction."

The scientists currently are looking for regulatory regions in Hessian fly-susceptible wheat genes that might act as vehicles to carry lectin or a toxin into plants to halt the virulent insects, Williams said. The regulatory regions, or promoters, would be from genes that the fly larvae ordinarily manipulate so plants will produce useful nutrients for the insect. Instead, the promoter would be hooked up to a lectin or toxin gene and inserted into the cells. When larvae manipulate the promoter, they would receive gut-altering lectin instead of nutrients.


Electron micrograph photo of Hessian fly
larvae. (Subhashree Subramanyam, Mary
Alice Web and Christie Williams)

To advance their investigation into developing more resistant plants, the researchers are beginning work on a single microchip that would be an array of genes from both the Hessian fly and wheat. This will allow the scientists to study insect-plant interactions. Knowing the timing and location of those interactions would enable the scientists to use the promoter tactic only in the vegetative parts of the wheat plant rather than in the head or grain portions. This will protect the grain quality and the consumer.

"Once we understand which genes are active and the timing of the interactions, we can really understand what the insect says to the plant and how the plant responds," Williams said.

The Hessian fly, which German mercenaries apparently introduced into North America during the Revolutionary War, causes catastrophic losses if not controlled by resistant plants. During the 1980s the state of Georgia suffered $28 million in lost wheat in one year after the fly overcame the plants' resistance gene used in the area at the time.

The Hessian fly is particularly insidious because it actually can control the wheat plant's development.

The adult fly lays eggs on the plant leaves. After the eggs hatch, the resulting tiny, red larvae crawl down to the base of the wheat where they feed on the plant. If the plant isn't resistant to the insect, the larvae inject chemicals from their saliva into the plant that completely alter the wheat's physiology and growth.

The other researchers on this study were USDA postdoctoral students Kurt Saltzmann and David Puthoff, Purdue graduate students Marcelo Giovanini and Martin Gonzalo, and Purdue professor of agronomy Herbert Ohm.

The USDA Agricultural Research Service Crop Production and Pest Control Research Unit and the Ministry of Education of Brazil CAPES Programme provided support for the study.

Milky Way's Black Hole Lights Up!

The area surrounding the light echo at the Galactic Center,
including Sagittarius A* (or Sgr A*, for short), the supermassive
black hole in the Galactic Center. The light echo is produced
when X-rays from the Milky Way's giant black hole bounce off
surrounding gas clouds. The light echo is found approximately
50 light years away from Sgr A*. (NASA/ CXC/ Caltech/ M.Muno)
Chandra X-ray Center News Release

January 10, 2007 - Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center.

A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra.

"This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction."

Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra.

Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past.

Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays.

"This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick K. Baganoff of the Massachusetts Institute of Technology in Cambridge. "The huge appetite is there, but it's not being satisfied."

The faint, star-like object in the center represents the typical, quiet behavior,
when the black hole does not have much material to consume. When the black
hole's feeding rate increases dramatically, the material around Sgr A* brightens.
Although the black hole outburst stops, the light from the outburst continues to
travel outwards and then reflects, or echoes, off three clouds of gas in its path.
(NASA/ CXC /M.Weiss)

During the outburst, the area close to the black hole would have been about 100,000 times brighter than it is currently. If such an outburst had occurred more recently, it likely would have been detected by an X-ray instrument, or would have produced similar features in other nearby clouds.

"Our data show it has been 50 years or so since the black hole had its last decent meal," said Muno. "This is nothing like the feasting that black holes in other galaxies sometimes enjoy, but it gives unique knowledge about the feeding habits of our closest supermassive black hole."

The details of how Sagittarius A* feeds remain unclear. For example, one possibility is that the black hole grows by pulling in matter from the winds of nearby young stars. Also, if there is a disk of material swirling around Sagittarius A*, it might be unstable in such a way that material migrates toward the black hole's edge in clumps, emitting X-rays before disappearing from the universe forever. The theoretical work is still being developed.

Studying this light echo is also important because it illuminates and probes the poorly understood molecular clouds near the center of the galaxy. In particular, it gives information about the dense cores of these clouds where new stars may be forming.

Variability in the X-ray emission between three Chandra observations in 2002, 2004 and 2005 argues against an alternate source for the light echo, which is that it came from a neutron star or black hole pulling matter away from a binary companion. This explanation is not favored because the data show the outburst would have been unusually long and bright for such a binary.

These results were presented at the American Astronomical Society meeting in Seattle, Wash., and will appear in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass.

Chandra X-ray Center - http://chandra.harvard.edu

New Stars in N90!

This image depicts bright blue newly formed stars that are blowing a cavity
in the centre of a fascinating star-forming region known as N90. The high
energy radiation blazing out from the hot young stars in N90 is eroding the
outer portions of the nebula from the inside, as the diffuse outer reaches of the
nebula prevent the energetic outflows from streaming away from the cluster
directly. Because N90 is located far from the central body of the Small Magellanic
Cloud, numerous background galaxies in this picture can be seen, delivering a
grand backdrop for the stellar newcomers. The dust in the region gives these
distant galaxies a reddish-brown tint. Credit: NASA, ESA and the Hubble Heritage
Team (STScI/AURA)-ESA/Hubble Collaboration
ESA/Hubble Information Centre News Release

January 8, 2007 - A new image from the Hubble Space Telescope shows N90, one of the star-forming regions in the Small Magellanic Cloud. The rich populations of infant stars found here enable astronomers to examine star forming processes in an environment that is very different from that in our own Milky Way.

This new image taken with the Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope depicts bright blue newly formed stars that are blowing a cavity in the centre of a fascinating star-forming region known as N90.

N90 is located in the wing of the Small Magellanic Cloud, in the constellation of Tucana, approximately 200,000 light-years away from the Earth. Its proximity makes it an exceptional laboratory to perform in-depth studies of star formation processes and their evolution in an environment close to that in the early Universe.

Dwarf galaxies such as the Small Magellanic Cloud, with small numbers of stars compared to our own Milky Way, are considered to be the primitive building blocks of larger galaxies. The study of star formation within this dwarf galaxy is particularly interesting to astronomers because its primitive nature means that it lacks a large percentage of the heavier elements that are forged in successive generations of stars through nuclear fusion.

The high energy radiation blazing out from the hot young stars in N90 is eroding the outer portions of the nebula from the inside, as the diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster directly. Because N90 is located far from the central body of the Small Magellanic Cloud, numerous background galaxies in this picture can be seen, delivering a grand backdrop for the stellar newcomers. The dust in the region gives these distant galaxies a reddish-brown tint.

Hubble has often been used to observe star birth regions, but they are rarely as stunning and fascinating as N90. At the heart of N90 lies NGC 602, a relatively isolated star cluster whose environment is a close analogue to what existed in the early Universe. The existence of dark clouds of dense dust and the cluster being rich in ionized gas suggest the presence of ongoing star formation processes.

Ridges of dust and gaseous filaments are seen towards north-west (in the upper left part of the image) and towards south-east (in the lower right hand corner). Magnificent elephant trunk-like dust pillars point towards the hot blue stars and are tell-tale signs of their eroding effect.

An international team of astronomers, led by Antonella Nota of the European Space Agency and the Space Telescope Science Institute in the US, has discovered a population of small newborn stars scattered across the picture. Observable around the bright blue stars at the centre of the image, these stars have caught astronomers’ attention because they are still forming from gravitationally collapsing gas clouds. Furthermore, they have not yet contracted to the point where their cores are hot enough to begin converting hydrogen into helium.

In this region it is possible with Hubble to trace how the star formation started at the centre of the cluster and propagated outwards, with the youngest stars still forming today along the dust ridges.

This image was presented by Lynn Redding Carlson, Johns Hopkins University, at the 2007 January meeting of the American Astronomical Society in Seattle.

ESA/Hubble Information Centre - http://www.spacetelescope.org
Snap Decisions More Reliable?
University College London News Release

January 8, 2007 - A UCL (University College London) study has found that you are more likely to perform well if you do not think too hard and instead trust your instincts. The research, published online today in the journal Current Biology, shows that, in some cases, instinctive snap decisions are more reliable than decisions taken using higher-level cognitive processes.

Participants, who were asked to pick the odd one out on a screen covered in over 650 identical symbols, including one rotated version of the same symbol, actually performed better when they were given no time at all to linger on the symbols and so were forced to rely entirely on their subconscious.

Dr Li Zhaoping, of the UCL Department of Psychology, said: "This finding seems counter-intuitive. You would expect people to make more accurate decisions when given the time to look properly. Instead they performed better when given almost no time to think. The conscious or top-level function of the brain, when active, vetoes our initial subconscious decision – even when it is correct – leaving us unaware or distrustful of our instincts and at an immediate disadvantage. Falling back on our inbuilt, involuntary subconscious processes for certain tasks is actually more effective than using our higher-level cognitive functions."

The study shows an instance when our rational mind is more likely to perform worse than our subconscious – but the conscious mind still tends to veto the subconscious.

Ten participants were asked to locate the only back to front version of a repeated symbol on screen and were given between zero and 1.5 seconds from the moment their eyes had landed on the odd one out to scrutinize the image. Participants had to decide whether the odd one out was on the left or the right-hand side of the screen. The researchers found that participants scored better if they were given no scrutinizing time at all.

US Senator John Kerry making a snap decision.

With only a tiny fraction of a second for scrutinizing the target, subjects performed with 95 per cent accuracy. With over a second to scrutinize the image, subjects were only 70 per cent accurate. With more than four seconds, accuracy was recovered.

In this test, the instinctive decisions were more likely to be correct because the subconscious brain recognises a rotated version of the same object as different from the original, whereas the conscious brain sees the two objects as identical. For the conscious brain, an apple is still an apple whether rotated or not. So while the lower-level cognitive process spots the rotated image as the odd one out, the higher-level function overrides that decision and dismisses the rotated object because it is the same as all the other symbols. When subjects were given the time to engage their higher-level functions, their decisions were therefore more likely to be wrong.

Dr Zhaoping said: "If our higher-level and lower-level cognitive processes are leading us to the same conclusions, there is no issue. Often though, our instincts and higher-level functions are in conflict and in this case our instincts are often silenced by our reasoning conscious mind. Participants would have improved their performance if they had been able to switch off their higher-level cognition by, for example, acting quickly."

Tracking participants' eye movements, the team controlled the time allotted to each individual's search for their target. The visual display screen was switched off at various time intervals either before or after the subjects' eyes landed on the target. When the on-screen image was hidden immediately after the subjects' eyes had landed on the target, the subjects often believed they were just guessing where the odd one out was. They were unaware that their gazes had shifted to the target just before the image was hidden and their answers weren't guesswork at all.

Dr Zhaoping said: "Our eye movements are often involuntary. What seems like a random darting of the eye is often an essential subconscious scanning technique that allows us to pick out unique and distinctive features in a crowd – such as color or orientation. Soon after our eyes have fixed on a target, the conscious or top-down part of cognition engages and examines whether the candidate really is the target or not. If the target is not distinctive enough in the 'eyes' of the conscious, failure of identification can occur."

University College London - http://www.ucl.ac.uk

Nuclear Waste Containment Flawed?

Davis-Besse reactor vessel head taken during the April 2000
refueling and maintenance outage just prior to allowing the
reactor restart for its operational run to the February 16, 2002
shutdown. Photo clearly indicates extensive corrosion occurring
on vessel head.
DOE/Pacific Northwest National Laboratory News Release

January 10, 2007 - Minerals intended to entrap nuclear waste for hundreds of thousands of years may be susceptible to structural breakdown within 1,400 years, a team from the University of Cambridge and the Pacific Northwest National Laboratory reported today (Jan. 11) in the journal Nature.

The new study used nuclear magnetic resonance, or NMR, to show that the effects of radiation from plutonium incorporated into the mineral zircon rapidly degrades the mineral's crystal structure.

This could lead to swelling, loss of physical strength and possible cracking of the mineral as soon as 210 years, well before the radioactivity had decayed to safe levels, said lead author and Cambridge earth scientist Ian Farnan.

According to current thinking, highly radioactive substances could be rendered less mobile by combining them, before disposal, with glass or with a synthetic mineral at a very high temperature to form a crystal.

However, the crystal structure can only hold the radioactive elements for so long. Inside the crystal radioactive decay occurs, and tiny atomic fragments called alpha particles shoot away from the decaying nucleus, which recoils like a rifle, with both types repeatedly blasting the structure until it breaks down.

This may increase the likelihood for radioactive materials to leak, although co-author William J. Weber, a fellow at the Department of Energy national laboratory in Richland, Wash., who made the samples used in the study, cautioned that this work did not address leakage, and researchers detected no cracking. Weber noted that the "amorphous," or structurally degraded, natural radiation-containing zircon can remain intact for millions of years and is one of the most durable materials on earth.

Some earth and materials scientists believe it is possible to create a structure that rebuilds itself after these "alpha events" so that it can contain the radioactive elements for much longer. The tests developed by the Cambridge and PNNL team would enable scientists to screen different mineral and synthetic forms for durability.

As well as making the storage of the waste safer, new storage methods guided by the NMR technique could offer significant savings for nations facing disposal of large amounts of radioactive material. Countries including the United States, Britain, France, Germany and Japan are all considering burying their nuclear waste stockpiles hundreds of meters beneath the earth's surface. Doing so necessitates selection of a site with sufficiently stringent geological features to withstand any potential leakage at a cost of billions of dollars. For example, there is an ongoing debate over the safety of the Yucca Mountain site in Nevada. A figure published in Science in 2005 put that project's cost at $57 billion.

"By working harder on the waste form before you started trying to engineer the repository or choose the site, you could make billions of dollars worth of savings and improve the overall safety," Farnan said.

"At the moment, we have very few methods of understanding how materials behave over the extremely long timescales we are talking about. Our new research is a step towards that.

"We would suggest that substantive efforts should be made to produce a waste form which is tougher and has a durability we are confident of, in a quantitative sense, before it is stored underground, and before anyone tried to engineer around it. This would have substantial benefits, particularly from a financial point of view."

PNNL senior scientist and nuclear magnetic resonance expert Herman Cho, who co-wrote the report, said: "When the samples were made in the 1980s, NMR was not in the thinking. NMR has enabled us to quantify and look at changes in the crystal structure as the radiation damage progresses.

"This method adds a valuable new perspective to research on radioactive waste forms. It has also raised the question: 'How adequate is our understanding of the long-term behavior of these materials?' Studies of other waste forms, such as glass, could benefit from this technique."

DOE/Pacific Northwest National Laboratory - http://www.pnl.gov

Hobart - Absolutely Free MP3s - Click for Download Page!

Paperback books by Rich La Bonté - Free e-previews!